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INTRODUCTION

e Dynamic characteristics of the test buildings were
investigated by means of forced and ambient vibration

measurements.

e Changes in the dynamic characteristics were traced for the
increasing levels of damping.

e Substandard RC buildings representative of buildings with
high seismic risk were considered.

Period

Damping

Mode Shape

Which path?

g Which final

value ?



TESTING SETUP and BUILDINGS

e Reminder of the presentation on the static cyclic test results

Building 1

Strong column weak beam mechanism
Normal axial load (i.e. 10%)
Constructed in early 90s

Building2  Building 1

Building 2

Weak column strong beam mechanism
High axial load (i.e. 25%)
Representative of 70's construction




TESTING SETUP and BUILDINGS

e Accelerometer locations Building 1: s

Building 2:

Sensor

Actuators Al 1.85 | 2.15 9
A2 0 0 9
A3 -1.85 | 2215 | 9
A4 0 0 6
A5 0 0 3
A6 0 0 0

* For performing Y-direction testing sensors
at the centers of the slabs (i.e. A2-4-5-6)
were rotated towards Y.



TESTING SETUP and BUILDINGS

e Accelerometers
Piezoelectric acceleometers:

A/1800 IEPE
by DJB Instrument:

mass

Conversion Mode

Voltage sensitivity mV/g
Resonant frequency kHz

Voltage sensitivity deviation re 20°C

Case Material
Supply Voltage V
Supply Current mA
Bias Voliage V (20°C)
Cross axis error % max
Frequency Response +5%

Mounting
Maximum continuous g level
Weight gm

Connector

Case Seal

occe\ermion/ ==
S

sensitive cone

Konic

10V/g
=4
5% @ -50°C
+5% @ +125°C
+10% @ +185°C

s/steel 303 S31
15(35
2/ 20
8.5/ 9.5
5%
0.2Hz — 1kHz

Base tapped 2 UNF x 4mm deep
500
400/407 (TC)

Microdot skt, 10/32 UNF thd
(A/1800/V & T)
TNC skt. (A/1800/TC)

Welded,
hermetic connector (TNC)




TESTING SETUP and BUILDINGS

e Ground vibration sources around the site

Construction sites are
located around the site.
Closest construction site
is 50[m] away.

A busy highway is
passing approx. 350[m]
away from the site



MEASUREMENT PROGRAM
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FREQUENCY RESPONSE FUNCTIONS

e Building 1, x-direction, no damage
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FREQUENCY RESPONSE FUNCTIONS

e Building 1, x-direction, d=1.5%
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SHAKER FORCE

e Peak force at maximum eccentricity
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2.5 - ~440 [kgb‘
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SHAKER FORCE

200 - -
e Risk of large deformations Building 1
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FINITE ELEMENT MODEL

e Building 1

Mode | Freq. [Hz] | Period [s]

1 3.29 0.304
2 3.47 0.289
3 4.43 0.225
4 10.0 0.100
5 10.6 0.094
6 12.9 0.077
7 17.7 0.056
8 18.9 0.053
9 22.8 0.044

E_ estimated simply using
TS500 (Eq.3.2) to obtain a
preliminary value.

E SAP2000 Ultimate 16.0.0
Structural Analysis Program



FREQUENCY RESPONSE FUNCTIONS

e Building 1, X-direction
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FREQUENCY RESPONSE FUNCTIONS

e Building 1, Y-direction
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FINITE ELEMENT MODEL

e Estimated Modal Characteristics of Building 2

z
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Mode | Freq. [Hz] | Period [s]

1

OO NOOULI B WN

2.11
2.12
2.79
6.00
6.02
7.86
8.89
8.89
11.4

0.473
0.473
0.358
0.166
0.166
0.127
0.112
0.112
0.0873

SAP2000 Ultirmate 16.0.0
Structural Analysis Program




FREQUENCY RESPONSE FUNCTIONS

e Building 2, X-direction
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FREQUENCY RESPONSE FUNCTIONS

e Building 2, X-direction
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FREQUENCY RESPONSE FUNCTIONS

e Building 2, Y-direction
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PERIOD ELONGATION

e Building 2: Elongation of modal periods with increasing damage

Period, T, [s]
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FREQUENCY RESPONSE FUNCTIONS

e |dentification of Damping using Half Power Bandwith Method
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*Chopra (2012)



FREQUENCY RESPONSE FUNCTIONS

e |ssues related to damping when the peaks are coincident:
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PERIOD AND DAMPING INCREASE

e Building 2, X-Direction

Extrapolated:
2.5%(1.6%) = 4%
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DAMPING MODELLING

e Building 2, X-Direction

Conventional Model

Observed Repsonse Rayleigh Damping: [C|= ¢, [M ]+ o, [K]
4 I 4 - a -1 *
=—"T +a,7-T
3.5 A 1st Peak O@O 3.5 Ar " k n
O 2nd Peak A _
x 3 0 3rd Peak ] 3
22.5 2 25 -
© 5 o 5
'§ _ A ,téo Total
E1-5 D@ g— 1.5 - Mass prop.
© © .
ol a 1- - Stiffness prop.
0.5 0.5 -
0 0 | | | | | | L 1
0 0.1 0.2. 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Period, T [s] Period, T [s]
e Very limited observation set "Extended Rayleigh Damping (with multiple
*  No soil flexibility constraints)" or similar models may be more
e No non-structural elements suitable.

*Clough & Penzien (1995)



AMBIENT VIBRATION

e Ambient vibrations were measured (when the time allowed)

Example: Building 2, X-Direction, No Damage

Acceleration [g]
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x 10 Recorded acceleration - 2nd story
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AMBIENT VIBRATION

e |ssues related to the shape of resulting spectra

Example: Case for sensor at the foundation
(which is expected to provide a flat spectrum).

Autocorrelation of Acceleration

10°t .~ Peak .
4— rea Decreasing
trend

CPSD[a(f)]
5

Sharp
increase

1 2 3 45 6 7 8 9 10 11 12
Frequency [HZ]

Considered causes: « Sensor limitation
e Cabling limitation
 Connection to data logger

e Other?

CPsD[a(f)]
)

cPSD[a(f)]
5

cPsDla(f)]

Autocorrelation of Acceleration

Building 1 |
23/07/14 |

1

1

1 2 3 45 6 7 8 9 101112

Building 2
15/08/14

1 2 3 45 6 7 8 9 101112

Building 2
16/09/14

1 2 3 45 6 7 8 9 1011 12
Frequency [HZz]

: All have the
e same trend



AMBIENT VIBRATION

e Simple filtering did not solve the issue

Trial

Trial

Frequency response

Frequency response

Filter Type:high, fC:Z[Hz], order n=2
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AMBIENT VIBRATION

e Application of "spectral whitening"

Spectral Whitening Factors ; :
Autocorrelation of Acceleration 100 P g . Autocorrelation of Acceleration
-8 . R
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AMBIENT VIBRATION

e Resulting "whitened" ambient vibration spectra

No damage After 1.5% drift
-10 -10
10 10
7.2
Building = v
@®
1 7
ol
@)
10'12 .......... 10'12 __________
123456789101112 123456789101112
No damage After 3% drift
073
v 6.1 9.v5
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T R
2 810" =
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O al
@)
orll—— ol o
123456789101112 1 2345678 9101112

Frequency [HZ] Frequency [Hz]



ONGOING WORK

 Stiffness evaluation:
Forced vibration — K, , Undamaged v.s. damaged
Ambient vibration > K,, " " " "
Measured static cyclic > K, " oo "

e Mode shape identification
Forced vibration — ( ¢,, ¢,, ...), Undamaged v.s. damaged
Ambient vibration > ( ¢,, ¢,, ...) " " " "

e Wavelet analysis of the data (together with Prof.Kusunoki)

e Application of FE model updating and system identification
methods



CONCLUSIONS

Preliminary conclusions of the study are, as follows:

e Damping was observed to increase rapidly as the
buildings deformed beyond their yield limit.

e Observed damping behaviour is different than that
is assumed in the conventional models.

e There are critical issues related to identification of
damping in the case for closely spaced modes.

e Ambient vibration measurements required special
processing.

Other conclusions are expected to be drawn as the
ongoing investigations progress.
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