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INTRODUCTION

• Dynamic characteristics of the test buildings were 
investigated by means of forced and ambient vibration 
measurements.

• Changes in the dynamic characteristics were traced for the 
increasing levels of damping.

• Substandard RC buildings representative of buildings with 
high seismic risk were considered.
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TESTING SETUP and BUILDINGS

• Reminder of the presentation on the static cyclic test results

Building 1
Strong column weak beam mechanism
Normal axial load (i.e. 10%)
Constructed in early 90s

Building 2
Weak column strong beam mechanism
High axial load (i.e. 25%)
Representative of 70's construction

Building 1Building 2



TESTING SETUP and BUILDINGS

• Accelerometer locations
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A2A3
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ZY Ly
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Shaker

Actuators

• For performing Y-direction testing sensors 
at the centers of the slabs (i.e. A2-4-5-6)
were rotated towards Y.

Sensor 
X 

(m)
Y

(m)
Z

(m)

A1 1.6 1.9 8.4

A2 0 0 8.4

A3 -1.6 -1.9 8.4

A4 0 0 5.6

A5 0 0 2.7

A6 0 0 0

Building 1:

Building 2: Sensor 
X 

(m)
Y

(m)
Z

(m)

A1 1.85 2.15 9

A2 0 0 9

A3 -1.85 -2.15 9

A4 0 0 6

A5 0 0 3

A6 0 0 0



TESTING SETUP and BUILDINGS

• Accelerometers

Sensors

Data 
Logger

A/1800 IEPE
by DJB Instruments 

Piezoelectric acceleometers:



TESTING SETUP and BUILDINGS

• Ground vibration sources around the site

Test site

Construction

Construction sites are 
located around the site. 
Closest construction site 
is 50[m] away.

A busy highway is 
passing approx. 350[m] 
away from the site
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• 4 forced vibration tests

• 8 forced vibration tests
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SHAKER FORCE

• Peak force at maximum eccentricity
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SHAKER FORCE

• Risk of large deformations
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FINITE ELEMENT MODEL

• Building 1

Mode Freq. [Hz] Period [s]
1 3.29 0.304
2 3.47 0.289
3 4.43 0.225
4 10.0 0.100
5 10.6 0.094
6 12.9 0.077
7 17.7 0.056
8 18.9 0.053
9 22.8 0.044

Mode 1 Mode 3

Mode 4 Mode 6Mode 5

Mode 2

Ec estimated simply using 
TS500 (Eq.3.2) to obtain a 
preliminary value.



FREQUENCY RESPONSE FUNCTIONS

• Building 1, X-direction
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FREQUENCY RESPONSE FUNCTIONS

• Building 1, Y-direction
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FINITE ELEMENT MODEL

• Estimated Modal Characteristics of Building 2

Mode 1 Mode 2

Mode Freq. [Hz] Period [s]
1 2.11 0.473
2 2.12 0.473
3 2.79 0.358
4 6.00 0.166
5 6.02 0.166
6 7.86 0.127
7 8.89 0.112
8 8.89 0.112
9 11.4 0.0873

Mode 3

Mode 4 Mode 6Mode 5



FREQUENCY RESPONSE FUNCTIONS

• Building 2, X-direction
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FREQUENCY RESPONSE FUNCTIONS

• Building 2, X-direction
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PERIOD ELONGATION

• Building 2: Elongation of modal periods with increasing damage
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FREQUENCY RESPONSE FUNCTIONS

• Identification of Damping using Half Power Bandwith Method
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FREQUENCY RESPONSE FUNCTIONS

• Issues related to damping when the peaks are coincident: 
(Building 1)

6.1 7.1 8.1 9.1 10.1
0

0.6

1.2

1.8

2.4

3 x 10-5

Frequency [Hz]

m
ax

|a
| /

 f2 , [
g/

H
z2 ]

 

 

Story:1(x)
Story:2(x)
Story:3(x)
Story:3(y)

5 6 7 8 9
0

0.6

1.2

1.8

2.4

3 x 10-5

Frequency [Hz]
m

ax
|a

| /
 f2 , [

g/
H

z2 ]
 

 

ζ= 1.3%

fn=8.1 fn=6.6

7.1

ζ= 1.1% ζ= 2.6%

No damage After 1.5% drift



0%

50%

100%

150%

200%

250%

300%

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0%
Drift Ratio [%]

Normalized Damping, ζi / ζo

X: 1st Peak

X: 2nd Peak

X: 3rd Peak

PERIOD AND DAMPING INCREASE

• Building 2, X-Direction

0

0.5

1

1.5

2

2.5

3

3.5

4

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0%
Drift Ratio [%]

Damping ratio, ζi [%]

X: 1st Peak
X: 2nd Peak
X: 3rd Peak

Extrapolated:
2.5×(1.6%) = 4%

Operational
Im. Occupa.
Life safety
Near collapse



DAMPING MODELLING

• Building 2, X-Direction
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"Extended Rayleigh Damping (with multiple 
constraints)" or similar models may be more 
suitable.

• Very limited observation set
• No soil flexibility
• No non-structural elements

*Clough & Penzien (1995)

*

Conventional Model



AMBIENT VIBRATION

• Ambient vibrations were measured (when the time allowed)
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AMBIENT VIBRATION

• Issues related to the shape of resulting spectra

Example: Case for sensor at the foundation 
(which is expected to provide a flat spectrum).
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Considered causes: • Sensor limitation
• Cabling limitation
• Connection to data logger
• Other?



AMBIENT VIBRATION

• Simple filtering did not solve the issue
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AMBIENT VIBRATION

• Application of "spectral whitening"
Spectral Whitening Factors

1 2 3 4 5 6 7 8 9 1011 12
10-12

10-11

10-10

10-9

10-8
Autocorrelation of Acceleration

C
PS

D
[a

(f)
]

Frequency [Hz]
1 2 3 4 5 6 7 8 9 1011 12

10-12

10-11

10-10

10-9

10-8
Autocorrelation of Acceleration

C
PS

D
[a

(f)
]

Frequency [Hz]

× =
Whitened

1 2 3 4 5 6 7 8 9 1011 12
10-12

10-11

10-10

10-9

10-8
Autocorrelation of Acceleration

C
PS

D
[a

(f)
]

Frequency [Hz]

Sensor at 
foundation

Sensor at 
2nd story

0 1 2 3 4 5 6 7 8 9 10 11 12

10-3

10-2

10-1

100

W
hi

te
ni

ng
 fa

ct
or

Spectral Whitening Factors

× =
1 2 3 4 5 6 7 8 9 1011 12

10-12

10-11

10-10Autocorrelation of Acceleration

C
PS

D
[a

(f)
]

Frequency [Hz]

Whitened

6.12.3 9.5

Same factors



AMBIENT VIBRATION

• Resulting "whitened" ambient vibration spectra
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ONGOING WORK

• Stiffness evaluation:
Forced vibration → KF ,  Undamaged v.s. damaged 
Ambient vibration → KA,  "  "        "             "
Measured static cyclic → KS ,  "  "        "             "
...

• Mode shape identification
Forced vibration → ( φ1, φ2, ...), Undamaged v.s. damaged 
Ambient vibration → ( φ1, φ2, ...) "            "           "            "
...

• Wavelet analysis of the data (together with Prof.Kusunoki)

• Application of FE model updating and system identification 
methods
...



CONCLUSIONS

Preliminary conclusions of the study are, as follows:
• Damping was observed to increase rapidly as the 

buildings deformed beyond their yield limit.
• Observed damping behaviour is different than that 

is assumed in the conventional models.
• There are critical issues related to identification of  

damping in the case for closely spaced modes.
• Ambient vibration measurements required special 

processing.

Other conclusions are expected to be drawn as the 
ongoing investigations progress.
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Thank you
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