

Field testing of substandard full scale RC buildings for seismic performance assessment: Quasi-static tests

M. Comert, C. Demir, A.O. Ates, E. Tore, O. Ozeren, A. Moshfeghi, S. Khoshkholghi, K. Orakcal, A. Ilki

Content

- Outline of the Project
- Introduction
- Building Characteristics
- Site Preparations
- Test Setup
- Observations and experimental results
- Predictions and comparisons

Project Outline

- **Project name:** Seismic performance assessment of existing buildings through full-scale tests
- Aim: To supply experimental data on seismic performances of structures of actual scale
- **Content:** Site tests on two full-scale sub-standard buildings
- Supported by: Istanbul Development Agency, Istanbul Technical University and sponsors
- **Duration:** 9 months + 3 months extension
- **Team:** 3 professors, 2 post-docs, 6 PhD candidates, 5 MSc students, 1 undergraduate student
- Advisors: 6 professors from Japan and Turkey
- **Budget:** Approximately 300 000 USD
- **Some figures:** 200 m³ concrete poured, 10 t steel bars for construction, 5.5 t kg steel for test setup

Seismicity of Turkey

Source: World Bank

Seismicity of Turkey

Earthquake Zones	Area (m2)	Percentage of Population
Zone 1	328995	45
Zone 2	186411	26
Zone 3	139594	15
Zone 4	97894	13
Zone 5	32051	2
Total	784945	100

Source: Turkish Earthquake Foundation

According to 2000 Building Census

Building Stock of Turkey

78 % of buildings was constructed between 1970-2000 years

Development of Seismic Code and Major Earthquakes

The existing building stock was only experienced 3 major earthquake

Properties of Building Stock

Huge part of buildings in Turkey was constructed between 1970-2000 years Between these years;

- Some part of buildings was constructed as non-engineered due to inadequate legal inspections.
- Some part was designed according to relevant seismic code but not constructed as designed.
- Some part was designed according to relevant seismic code and constructed as designed.

Most Common Deficiencies

Based on observations made after recent EQs

Low Concrete Quality

Before 2000's, Most of buildings in Turkey were constructed with hand-mixed concrete.

Large Stirrup Spacing

Approximately 200-300 mm

Improper Stirrup Hook Details

90° Hooks and Inadequate Hook Length

Plain Bars

Plain bars, inadequate lap splice lengths, missing hooks

TB2

TEST BUILDING 2 REPRESENTATIVE SUB-STANDARD BUILDING

Low Strength Concrete Plain Bars Large Stirrup Spacing Improper Hook Details

TEST BUILDING 1

PART OF AN ACTUAL BUILDING

Low Strength Concrete Plain Bars Large Stirrup Spacing Improper Hook Details

What are the differences ?

TB1;

- Weak Beam Strong Column
- Lower Axial Load Level
- Higher Shear Demand Capacity Ratio

TB2;

- Strong Beam Weak Column
- Higher Axial Load Level
- Lower Shear Demand Capacity Ratio

Concrete Compressive Strength 13.5 MPa

Reinforcing Bars

Column Long. f_y =280 MPa (lap splices without hook, 32 ϕ -60 ϕ) Beam Long. f_y =444 MPa (lap splices with hook) Stirrups f_y =365 MPa (closed tie 90 degree hook)

1st Story Plan

H_{story}=2.7 m

3rd Story Plan

H_{story}=2.7 m

K11, K12,K21,K22,K31,K32

Beam Reinforcement Details

Column Axial Load Level: %10

Column Shear Demand Capacity Ratio: 0.65

Concrete Compressive Strength 10 MPa

Reinforcing Bars

Column Long. f_y =350 MPa (lap splices with hook, 50 ϕ) Beam Long. f_y =350 MPa (lap splices with hook)

Story Plan – All Stories H_{story}=3.0 m

Beam Reinforcement Details

Beams in Loading Direction

Column Axial Load Level: %25

Column Shear Demand Capacity Ratio: 0.30

• Test site @ Fikirtepe Urban Renewal Area

• Test Building 1

• Site survey, material sampling, dimensions, reinforcement details, etc.

Site PreparationsDemolution for Test Building 1

Test Building 1 (TB1)

Site PreparationsDemolution

Site Preparations Demolution

• Test site layout

Site PreparationsPouring of lean concrete

- Foundation construction
- 60 cm thick

• Existing foundation of TB 1

• New mat foundation for TB 1

- Reaction wall construction
 - 50 cm thick wall
 - Wing form for testing two buildings consequtively

• Construction of Test Building 2 (TB2)

Test Setup: Loading

- Reversed cyclic loading with three hydraulic actuators (300 kN load and 800 mm displacement capacities)
- Diplacement controlled loading for TB1
- Displacement and load controlled loading for TB2
- Load distribution in elevation(2P-P) kept constant

Test Setup: Loading

- TB1 loaded to 1.5% DR
- TB2 loaded to 4% DR Reversed cyclic until 3% DR then cyclic until 4% DR

Test Setup: Measurement System

% 0.25 Drift Ratio – 1cycle

Beams W_{max}=0.2 mm Columns W_{max}<0.1 mm

% 0.50 Drift Ratio - 2 cycles

Beams W_{max}=1.2 mm Columns W_{max}=0.6 mm

% 0.75 Drift Ratio - 1 cycle

BeamsColumns W_{max} =2.2 mm W_{max} =1.6 mmCrushing at positive peakBucking of bars at negative peak (K11)

200 150 100 Base Shear (kN) 50 0 -50 -100 -150 -200 -2 -1.5 -1 -0.5 0 0.5 1.5 2 1st Story Drift %

% 1.00 Drift Ratio - 2 cycles

Beams $W_{max}=6 \text{ mm}$ Bucking of bars (K12)

Columns W_{max}=1.8 mm **Vertical Cracks**

2

200 150

100

50

% 1.50 Drift Ratio - 2 cycles

Beams W_{max}=9 mm Columns W_{max}=3 mm Bar Buckling (S14)

% 0.25 Drift Ratio – 1cycle

Beams No damage Columns W_{max}=0.1 mm

% 0.50 Drift Ratio – 2cycle

Beams No damage Columns W_{max}=0.3 mm

% 0.75 Drift Ratio – 1cycle

Beams No damage Columns W_{max}=1.4 mm

% 1.00 Drift Ratio – 2cycle

Beams No damage Columns W_{max}=1.7 mm

% 1.50 Drift Ratio – 2cycle

Beams No damage Columns W_{max}=3.5 mm First Concrete Crushing

% 2.00 Drift Ratio – 2cycle

Beams No damage Columns W_{max}=4.5 mm Concrete Crushing Vertical Cracks

% 2.50 Drift Ratio – 2cycle

Beams No damage Columns W_{max}=7 mm

Beginning of Concrete Cover Spalling

% 3.00 Drift Ratio – 2cycle

Beams No damage Columns W_{max}=8 mm Concrete Cover Spalling

% 3.50 Drift Ratio – Monotonic

Beams No damage Columns W_{max}=10 mm

Concrete Cover Spalling

% 4.00 Drift Ratio – Monotonic

Beams No damage Columns W_{max}=13 mm

Concrete Cover Spalling

Crack Widths: TB1

Columns

Drift Ratio (%)	Crack Width at Peak (mm)	Residual Crack Width (mm)
0.25	0.1	0
0.50	0.5	0.1
0.75	2.0	0.6
1.50	3.0	1.5

Beams

Drift Ratio (%)	Crack Width at Peak (mm)	Residual Crack Width (mm)
0.25	0.2	0.1
0.50	2.2	0.6
0.75	1.8	1.2
1.00	6.0	5.0
1.50	9.0	6.0

Crack Widths: TB2

Columne

Columns			40
Drift Ratio (%)	Crack Width at Peak (mm)	Residual Crack Width (mm)	0 20
0.25	0.1	0	-40 -40
0.50	0.3	0.1	-60 -80
0.75	1.4	0.3	-100
1.00	1.7	0.4	-5 -4 -3 -2 -1 0 1 2 3 4 : 1 st Story Drift %
1.50	3.5	0.6	Concrete crushing initiated
2.00	4.5	2.0	
2.50	7.0	3.0	Cover spalling initiated
3.00	8.0	5.0	
3.50	10.0	6.0	
4.00	13.0	8.0	

100

80

60

Maa

To compare test results with analytical results Pushover analyses were performed for TB1 and TB2.

During the analyses;

Nonlinear behavior of columns were modelled with fiber hinges considering the following material behavior

Nonlinear behavior of beams were modelled with moment-plastic rotation hinges.

Analyses were made with SAP2000.

Pushover Analyses of Buildings

Failure Mechanisms

TB1- Firstly, beams reach their capacity.

TB2- Firstly, columns reach their capacity.

Displacement Demands of Test Buildings (Ao=0.4, Z2 Soil Class)

TB1 – Drift Demand from 1st Story is 1.1%

TB2 – Drift Demand from 1st Story is 3.3%

Turkish Seismic Design Code 2007 Section Damage Limits

Damage levels	Concrete strain limit*	Steel strain limit	
Minimum damage limit (MN)	$(\varepsilon_c)_{MN} = 0.0035$ Cover Concrete	$\left(\varepsilon_{s}\right)_{MN}=0.01$	
Safety limit (SL)	$(\epsilon_{cg})_{GV} = 0.0035 + 0.01 (\rho_s / \rho_{sm}) \le 0.0135$ Core Concrete	$(\varepsilon_s)_{SL} = 0.04$	
Failure limit (FL)	$(\varepsilon_{cg})_{GC} = 0.004 + 0.014 (\rho_s / \rho_{sm}) \le 0.018$ Core Concrete	$(\varepsilon_s)_{FL} = 0.06$	

Demand of Earthquake (Ao=0.4, Z2 Soil Class)

Collapse Limit According to Turkish Seismic Code 2007

Analytical Response

Building Response

Asce 41-13 Section Damage Limits

Table 10-8. Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures-Reinforced Concrete Columns

		Modeling Parameters'			A	Acceptance Criteria		
			Plastic Flotations Angle (radians)		Residual Strength Ratio	Plastic Rotations Angle (radians) Performance Level		
	Conditions		ò	e	ю	LS	CP	
Condition i. ^b								
p ·	A							
A. /'	$\rho = \frac{1}{h_{r}}$							
<0.1	>0.006		0.035	0.060	0.2	0.005	0.045	0.060
20.6	20.006		0.010	0.010	0.0	0.003	0.009	0.010
<0.1	-0.002		0.027	0.034	0.2	0.005	0.027	0.034
20.6	-0.002		0.005	0.005	0.0	0.002	0.004	0.005
Condition ii.*								
p c	Λ.	V 4						
A. ('	$\rho = \frac{m}{b}$	h A/E						
<01	>0.006	<3 (0.25)	0.032	0.050	0.2	0.005	0.045	0.060
\$0.1	>0.005	>6 (0.5)	0.025	0.050	0.2	0.005	0.045	0.060
>0.6	>0.006	<3 (0.25)	0.010	0.010	0.0	0.003	0.009	0.010
20.6	20.006	>6 (0.5)	0.008	0.008	0.0	0.003	0.007	0.008
<0.1	<0.0005	<3 (0.25)	0.012	0.012	0.2	0.005	0.010	0.012
\$0.1	<0.0005	>6 (0.5)	0.006	0.006	0.2	0.004	0.005	0.006
20.6	<0.0005	<3 (0.25)	0.004	0.004	0.0	0.002	0.003	0.004
>0.6	<0.0005	≥6 (0.5)	0.0	0.0	0.0	0.0	0.0	0.0
Condition iii.*								
p < -	Ar Ar							
$A_{s}f_{t}^{\prime}$	$p = \frac{b_{as}}{b_{as}}$							
≤0.1	≥0.006		0.0	0.060	0.0	0.0	0.045	0.060
≥0.6	≥0.006		0.0	0.008	0.0	0.0	0.007	0.008
≤0.1	≤0.0005		0.0	0.006	0.0	0.0	0.005	0.006
≥0.6	≤0.0005		0.0	0.0	0.0	0,0	0.0	0,0
Condition iv. C	olumns controlled by in	adequate development or sp	licing along the cle	ar height ^e				
P	A.							
A. f.	$p = \frac{b_{a}s}{b_{a}s}$							
≤0.1	≥0.006		0.0	0.060	0.4	0.0	0.045	0.060
≥0.6	≥0.006		0.0	0.008	0.4	0.0	0.007	0.008
≤0.1	≤0.0005		0.0	0.006	0.2	0.0	0.005	0,006
20.6	≤0.0005		0.0	0.0	0.0	0.0	0.0	0.0

NOTE: f,' is in lb/in.2 (MPa) units.

"Values between those listed in the table should be determined by linear interpolation.

"Refer to Section 10.4.2.2.2 for definition of conditions i, ii, and iii. Columns are considered to be controlled by inadequate development or splices where the calculated steel stress at the splice exceeds the steel stress specified by Eq. (10-2). Where more than one of conditions i, ii, iii, and iv occurs for a given component, use the minimum appropriate numerical value from the table.

Where P > 0.7A, f'_{c} , the plastic rotation angles should be taken as zero for all performance levels unless the column has transverse reinforcement consisting of hoops with 135 degree hooks spaced at \$ d/3 and the strength provided by the hoops (Va) is at least 3/4 of the design shear. Axial load P should be based on the maximum expected axial loads caused by gravity and earthquake loads. "V is the design shear force from NSP or NDP.

Demand of Earthquake (Ao=0.4, Z2 Soil Class)

Collapse Limit According to ASCE 41-13

Analytical Response

Building Response

Conclusions

- Procedure followed for full-scale site testing of two typical substandard buildings summarized.
- Damage evolution of strong column-weak beam (TB1) and weak column-strong beam (TB2) type buildings differentiated.
 - TB1: Damage first occurred at beam support regions then column lower end regions failed
 - TB2: Damage concentrated only at column end regions, rocking like behavior for columns
- Should be careful for TB2 type buildings during post-EQ damage assessment
- TSDC (2007) is more conservative then ASCE41-13 particularly in the case of members confined with improper stirrup details